Dot Graphics on the IMSAI-VIO

by Gary Sabot

Run TRS-80, Apple or PET graphics programs on your
IMSAI-VIO and similar video boards with this program.

Several of the personal computers in wide use today
are capable of displaying low resolution graphics. This
means that they are able to display dots, lines, pictures,
or even animated characters on their screens. The TRS-
80 and the Apple have this capability. Because of the
widespread use of these two computers, there are many
programs available which make use of their graphics
capability. This article presents a program that will
enable owners of the Imsai VIO (or similar memory-
mapped displays, such as the Polymorphics VTI) to
utilize these programs. By making a few simple
changes, all TRS-80 graphics programs, most Apple
graphics programs (those programs which do not make
extensive use of color), and some PET graphics pro-
grams will run on your machine.

The Imasi VIO is capable of displaying special
"graphics characters.” (See Figure 1.) Each graphics
character contains six squares. By using the proper
graphics character, it is possible to turn each of these
six squares on (white), or off (black) independently. The
problem is: how can a single square be turned on, with-
out disturbing the five squares that surround it?

My solution to this problem is in the form of a machine
language program. (See listing #1.) It allows a Basic
program to quickly and easily plot points using the VIO.
It can be modified to work with other memory-mapped
display boards, such as the Polymorphics VTI. The pro-
gram is designed to be used in conjunction with Micro-
soft Basic and CP/M. (Of course, it can also be used by a
machine language program.)

To plot a point, the proper graphics character must be

Gary Sabot, 38 Woodland Rd., Roslyn, NY 11576,

30

selected; then this character must be placed in the
correct memory location. If this process were to be
implemented as a Basic program, it would take approxi-
mately one-half second to plot each point. If a program
that plots several hundred points were run, however,
those one-half seconds would add up, delaying the pro-
gram. | have implemented the plotting program in
machine language, because a machine language pro-
gram is considerably faster than an equivalent program
written in Basic. If a Basic program needs to turn a
certain square "on,” it simply passes its X-Y coordinates
to this routine (see Figure 2) and calls it, using the USR
function. The routine then turns the square “on,” and
subsequently returns to the Basic program. Analagous
procedures may be used to determine the square’s
present color (black or white), or to turn it off (black).

Utilizing The Program

If you have a 30K CP/M system using the Imsai VIO,
you can employ the program just as | assembled it. To
use the routine (after you have POKE'd it into memory —
see the Basic listing), first POKE the Y coordinate of the
desired pixel into location 6889H, then POKE the X
coordinate into 688AH, and POKE the function number
into 688BH. The function number would be a 1 to set
the pixel white. This is equivalent to the TRS-80's
SET(X,Y) command. The function number would be a 0
to set the pixel black. This is identical to the TRS-80's
RESET(X,Y) command. If the function number is a two,
the plotting routine will determine the present status of
the pixel, without disturbing it. This is similar to the TRS-
B80's POINT(X,Y) command. The status of the pixel is
retrieved by a PEEK to 688BH. A O will be found there if

MICROSYSTEMS

—
128 129 130 131 132
133 134 135 136 137
138 139 140 141 142

143 144 145

Figure 1. Some of the Imsai VIO's “graphic characters.”
The number of the desired character can be placed in
the VIO’s refresh memory; subsequently, the character
will appear on the screen.

191

3
Y-AXIS

< >
C;)’A
< x
[AWS

X-AXIS

7 —P 159

~

7

< X
I
W
< X
EN S

Figure 2. This is the coordinate system used to address
the squares, or pixels, on the screen. It is the same as the
system used by the TRS-80, except that the VIO's display
is larger (160 by 72, compared with the TRS-80’s 128 by
48).

SRS

the pixel is black and a 1 will be found there if the pixel is
white. Once the proper values for the XY coordinates,
and the function number have been POKED into
memory, jump to 6800H using the USR function to
execute the plotting routine.

| have provided a sample Basic program which uses
my point plotting routine. (See listing #2.) It is a modifi-
cation of program on page 33 of Introduction to Low
Resolution Graphics, by Nat Wadsworth. The program
draws lines between random points on the screen.

This plotting routine enables you
to adapt to your computer
the many TRS-80, Apple, and PET
programs employing graphics which
are in the public domain.

Because the plotting program is written in machine
language, it is necessary to reserve memory for it when
MBasic is run. To do this, instead of simply typing
“MBasic” to run MBasic, type “MBasic /M:&HB7FF".
This sets 67FF as the highest address available for use
by MBasic. The preface “&H"” indicates that a hex
number will follow.

If your system is larger than 30K, you might want to
reassemble the routine at a higher address, in order to
fully utilize your memory. For every kilobyte of memory
that you have above 30K, add 400H to 67FFH. Then
reassemble the routine at the resulting address. Finally,
substitute the new origin for the 67FFH in “MBasic
/M:&HB7FF". Of course, the locations for POKING and
PEEKING change each time a different version of this
program is assembled.

MICROSYSTEMS

If you are using a video board other than the VIO, you
will probably have to reassembie the program, making
one or more of the following changes (most involve the
“"EQUates” in the beginning of the programj:

1) If your video board is addressed at a location other
than 61440 (FOOOH), change the value in the line begin-
ning "SCREENAD EQU...” in the listing to the correct
screen address.

2) If the line length of your display is different than 80
characters per line, change the line length in the listing
(“"LINE EQU...") to the proper value, and reassemble it.

3) If a black pixel is represented by a 1, and not a 0,
substitute 1 for O in the listing where it now reads “BLK
EQU 0.

4) Determine the value of a blank (all black) character
cell and substitute this for the 80H in the line "BLKCHR
EQU 80H".

5) Find out what the proper CHRAND and CHRCPI
values for your display should be (refer to the comments
in the program listing) and insert the correct values into
the program.

6) If the progression from black to white on your video
board is different than that shown in Figure 1, you will
have to modify the portion of the program (6843H thru
6863H) that calculates the bit mask. This can be a very
involved process!

Now that your computer has dot graphics capability,
make it work for you. Programs can be written with
output in the form of a graph, instead of in numbers and
letters. Programs can even be designed to imitate
arcade games. One of the most exciting possibilities of
this plotting routine is that it enables you to adapt to
your computer the many TRS-80, Apple, and PET pro-
grams employing graphics which are in public

domain. d
—PROGRAM BEGINS NEXT PAGE—

31

POINT PLOT LISTING

LISTING #1

g ***%%%%x POINT PLOT ROUTINE FOR MEMORY MAPPED DISPLAYS ****%%x%
;¥ kkxkk%® BY GARY SABOT 11/27/79 *kkkkkxk

FOB@ = SCREENAD EQU 61440 ;ADDRESS OF VIDEO BOARD
0358 = LINE EQU 8a ; LINE LENGTH
Beaa = BLK EQU @ ;BIT THAT REPRESENTS A
;PIXEL THAT IS "OFF" (BLACK)
0883 = BLKCHR EQU 8 @H ;CONTENTS OF A BLANK (BLACK)
aacag = CHRAND EQU @COH
2080 = CHRCPI EQU 80H
;CHRAND IS "ANDED" WITH THE CONTENTS OF A CHARACTER CELL. IF
; THE CELL CONTAINS A VALID GRAPHICS CHARACTER (NON-ALPHABETIC)
: THE RESULT SHOULD EQUAL CHRCPI. 1IF IT DOES NOT, A BLANK
;CHARACTER WILL BE PLACED IN THE CELL.
6898 ORG 680 0H
;:DATA SHOULD BE STORED IN FORM Y, X, FUNCTION #
;FUNCTION #~- 9 MEANS SET BLACK, 1 MEANS SET WHITE,
;ALL ELSE MEANS RETURN DOT STATUS (@=BLACK, 1=WHITE)
6800 218968 LXI H,DATA :SET POINTER TO DATA
5803 OQEQQ MVI c,0 ;LOAD C WITH ZERO
6805 7E MOV A,M ;LOAD ¥ INTO A
6806 D6G3 DIV: SUI 3 ;DIVIDE Y BY 3,
; PUT RESULT IN C
6808 DA1068 JC DIVX
680B 4C INR C
680C A7 ANA A
680D C20668 JINZ DIV
6810 328C68 DIVX: STA YREM :SAVE REMAINDER FROM
;DIVISION OF Y
6813 23 INX H ;READ IN VALUE OF X
6814 7E MoV A,M
6815 OF RRC ;DIVIDE X BY 2
6816 E67F ANI 7FH ;STRIP OFF FIRST BIT
6818 2100F0 LXI H, SCREENAD ; LOAD ADDRESS QOF VIDEO BOARD
681B 5F MOV E,A ;CALCULATE CHARACTER'S
; LOCATION IN MEMORY
681C 1620 MVI D,@
GBlE 19 DAD D ;ADD X TO BASE ADDRESS
681F 115000 LXI D,LINE ; PREPARE TO MULTIPLY
6822 79 MoV A,C
6823 A7 ANA A
6824 CA3068 Jz ADFND
6827 3D MULT: DCR A ;ADD Y*LINE LENGTH TOC
;BASE ADDRESS
6828 CA2F68 JZ ONEMOR ;PUT ADDRESS IN HL
682B 19 DAD D
682C C32768 JMp MULT
682F 19 ONEMOR: DAD D
f
ADFND:
;FIRST CHECK IF A GRAPHICS CHARACTER IS ALREADY IN CHARACTER
;CELL. IF NOT, STORE A BLACK CHARACTER THERE.
; THEN CALCULATE BIT MASK
6839 TE MOV A,M ;LOAD CHARACTER
6831 E6CH ANI CHRAND ;CHECK IF GRAPHICS CHARACTER
6833 FESG CPI CHRCPI
5835 CA3B68 Jz FNDBIT ;YES, NOW CONTINUE
6838 3E89 MVI A ,BLKCHR ;NO, STORE AN ALL

MICROSYSTEMS

683A
683B
683E

6840
6843
6845
6848
6584A
684B

684E
684F
6852
6853
6856
6857
68 5A
685B
685C
685D
6860
6861
6863

6864
6867
6868
686B
686C

686F
6870

6871

6874
5876
6879
687A
687D

77
3A8A68
E601

CA4868
3EQ1
C34As68
3E08
47
3A8C68

A7
CA6068
3C
CA6468
3C
C26068
78

a7

47
C36458
78
2797
47

3A8B68
A7
CA7E68
3D
CA8568

7E
AQ

CA7A6G8

3EQ1
328B68
Cc9
328B68
Cc9

MICROSYSTEMS

MOV
FNDBIT: LDA
ANI

Jz
MVI
JMP
XRZER: MVI
CONT: MOV
LDA

ANA
Jz
INR
Jz
INR
JINZ
SHIFT1: MOV
RLC
MOV
JMP
SHIFT2: MOV
RLC !
MOV

M,A
DATA+1
1

XRZER
A,l
CONT
A,8
B,A
YREM

A
SHIFT2
A
MSKFND
A
SHIFT?2
A,B

B,A

MSKFND

A,B
RLC

B,A

;BLACK CHARACTER

;LOAD VALUE OF X
;GET REMAINER FROM

;DIVISION BY 2

;REMAINDER IS ZERO

;BEGIN TO FORM BIT MASK IN A
;CONTINUE

;SAVE PARTIALLY FORMED MASK
; LOAD REMAINER FROM
;DIVISION OF Y

;SET FLAGS

;NEEDS TO BE SHIFTED TWICE

;DOES NOT NEED TO BE SHIFTED

;MUST BE SHIFTED TWICE
;LOAD BIT MASK

;SHIFT LEFT ONCE

;SAVE IN B

; LOAD BIT MASK
;SHIFT LEFT TWICE
;SAVE IN B

’
;THE BIT MASK IS IN B AND THE CHARACTER ADDRESS IS IN HL.
;NOW COMPUTE AND PUT PROPER VALUE ON THE SCREEN.

MSKFND:
LDA
ANA
Jz
DCR
Jz

e we we

MOV
ANA
IPF
JNZ
ENDIF
IF
JZ
ENDIF
MVI
STA
RET
RETBLK: STA
RET

DATA+2
A
SETBLK
A
SETWHT

ASSUME CALLER WANTS DOT STATUS

A,M

B

BLK
RETBLK

NOT BLK

RETBLK

A,l
DATA+2

DATA+2

;GET FUNCTION #
;@ MEANS SET DOT BLACK

;1 MEANS SET DOT WHITE

; LOAD CHARACTER CELL
;AND WITH BIT MASK

;RETURN A 1 FOR "WHITE"

;RETURN A @ FOR "BLACK"

; THE FOLLOWINC ROUTINES ALL LOAD THE CHARACTER CELL,

;MODIFY IT IN THE DESIRED WAY,

¥
;SET DOT BLACK

’
SETBLK:
IF

MOV
ORA
MOV
RET

BLK

SAVE IT, AND RETURN.

;CONDITIONAL ASSEMBLY
;WHEN BLACK=1

33

Dot Graphics con’t...

687E
687F
68840
6881
6882
6883
5884

6885
6886
6387
5888

6889

688C
688D

7E
B§
77
c9o

;SET DOT WHITE

SETWHT:

DATA

YREM

ENDIF

IF
MOV
CMA
Mov
Mov
ANA
Mov
RET
ENDIF

IF
MOV
CMA
MOV
MOV
ANA
Mov
RET
ENDIF

IF
MoV
ORA
MOV
RET
ENDIF

DS

DS
END

NOT BLK
A,B

T o
= >

<
>

OoT BLK
M

6890H

:STORAGE FOR Y, X,
;AND FUNCTION NUMBER
:STORAGE FOR REMAINER OF Y/3

